Development and implementation of split-GFP-based bimolecular fluorescence complementation (BiFC) assays in yeast.

نویسندگان

  • Emma Barnard
  • Neil V McFerran
  • Alan Trudgett
  • John Nelson
  • David J Timson
چکیده

BiFC (bimolecular fluorescence complementation) is a tool for investigating interactions between proteins. Non-fluorescent fragments of, for example, GFP (green fluorescent protein) are fused to the interacting partners. The interaction brings the fragments together, which then fold, reassemble and fluoresce. This process can be carried out in living cells and provides information both on the interaction and its subcellular location. We have developed a split-GFP-based BiFC assay for use in the budding yeast Saccharomyces cerevisiae in which the modifications are carried out at the genomic level, thus resulting in the tagged yeast proteins being expressed at wild-type levels. The system is capable of detecting interactions in all subcellular compartments tested (the cytoplasm, mitochondria and nucleus) and makes a valuable addition to techniques for the investigation of protein-protein interactions in this model organism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving analytical methods for protein-protein interaction through implementation of chemically inducible dimerization

When investigating interactions between two proteins with complementary reporter tags in yeast two-hybrid or split GFP assays, it remains troublesome to discriminate true- from false-negative results and challenging to compare the level of interaction across experiments. This leads to decreased sensitivity and renders analysis of weak or transient interactions difficult to perform. In this work...

متن کامل

The analysis of protein-protein interactions in plants by bimolecular fluorescence complementation.

Following the complete genome sequencing of different plant species such as Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and Physcomitrella (Physcomitrella patens), as well as advances toward deciphering entire proteomes, the need for a reliable way to identify protein-protein interactions is becoming a major task for the future. Bimolecular fluorescent complementation (BiFC) is a n...

متن کامل

Update on Bimolecular Fluorescence Complementation in Plants The Analysis of Protein-Protein Interactions in Plants by Bimolecular Fluorescence Complementation

Following the complete genome sequencing of different plant species such as Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and Physcomitrella (Physcomitrella patens), as well as advances toward deciphering entire proteomes, the need for a reliable way to identify protein-protein interactions is becoming a major task for the future. Bimolecular fluorescent complementation (BiFC) is a n...

متن کامل

Visualization of cofilin-actin and Ras-Raf interactions by bimolecular fluorescence complementation assays using a new pair of split Venus fragments.

The bimolecular fluorescence complementation (BiFC) assay is a method for visualizing protein-protein interactions in living cells. To visualize the cofilin-actin interaction in living cells, a series of combinations of the N- and C-terminal fragments of Venus fused upstream or downstream of cofilin and actin were screened systematically. A new pair of split Venus fragments, Venus (1-210) fused...

متن کامل

A Bimolecular Fluorescence Complementation Tool for Identification of Protein-Protein Interactions in Candida albicans

Investigation of protein-protein interactions (PPI) in Candida albicans is essential for understanding the regulation of the signal transduction network that triggers its pathogenic lifestyle. Unique features of C. albicans, such as its alternative codon usage and incomplete meiosis, have enforced the optimization of standard genetic methods as well as development of novel approaches. Since the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 36 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2008